Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106691

RESUMO

This study estimated the effect of substituting fishmeal completely with cottonseed protein concentrate (CPC) in the diet of sturgeon (Acipenser schrenckii) on growth, digestive physiology, and hepatic gene expression. A control diet containing fishmeal and an experimental diet based on CPC was designed. The study was conducted for 56 days in indoor recirculating aquaculture systems. The results showed that weight gain, feed efficiency, and whole-body essential amino acids (EAAs) all decreased significantly in the experimental group, while whole-body non-essential amino acids (NEAAs) and serum transaminase activity increased (p < 0.05). The activity of digestive enzymes in the mid-intestine was significantly reduced (p < 0.05), and liver histology revealed fatty infiltration of hepatocytes. The hepatic transcriptome revealed an upregulation of genes linked to metabolism, including steroid biosynthesis, pyruvate metabolism, fatty acid metabolism, and amino acid biosynthesis. These findings indicate that fully replacing fishmeal with CPC harms A. schrenckii growth and physiology. This study provides valuable data for the development of improved aquafeeds and the use of molecular methods to evaluate the diet performance of sturgeon.

2.
Front Nutr ; 10: 1008822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960199

RESUMO

This study aimed to investigate the effects of phenylalanine on the growth, digestive capacity, antioxidant capability, and intestinal health of triploid rainbow trout (Oncorhynchus mykiss) fed a low fish meal diet (15%). Five isonitrogenous and isoenergetic diets with different dietary phenylalanine levels (1.82, 2.03, 2.29, 2.64, and 3.01%) were fed to triplicate groups of 20 fish (initial mean body weight of 36.76 ± 3.13 g). The weight gain rate and specific growth rate were significantly lower (p < 0.05) in the 3.01% group. The trypsin activity in the 2.03% group was significantly higher than that in the control group (p < 0.05). Amylase activity peaked in the 2.64% treatment group. Serum superoxide dismutase, catalase, and lysozyme had the highest values in the 2.03% treatment group. Liver superoxide dismutase and catalase reached their maximum values in the 2.03% treatment group, and lysozyme had the highest value in the 2.29% treatment group. Malondialdehyde levels in both the liver and serum were at their lowest in the 2.29% treatment group. Interleukin factors IL-1ß and IL-6 both reached a minimum in the 2.03% group and were significantly lower than in the control group, while IL-10 reached a maximum in the 2.03% group (p < 0.05). The tight junction protein-related genes occludin, claudin-1, and ZO-1 all attained their highest levels in the 2.03% treatment group and were significantly higher compared to the control group (p < 0.05). The intestinal villi length and muscle layer thickness were also improved in the 2.03% group (p < 0.05). In conclusion, dietary phenylalanine effectively improved the growth, digestion, absorption capacity, antioxidant capacity, and intestinal health of O. mykiss. Using a quadratic curve model analysis based on WGR, the dietary phenylalanine requirement of triploid O. mykiss fed a low fish meal diet (15%) was 2.13%.

3.
Biology (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829424

RESUMO

This study aimed to determine the effects of dietary sodium butyrate (NaB) on the growth and gut health of triploid Oncorhynchus mykiss juveniles (8.86 ± 0.36 g) fed a low fish meal diet for 8 weeks, including the inflammatory response, histomorphology, and the composition and functional prediction of microbiota. Five isonitrogenous and isoenergetic practical diets (15.00% fish meal and 21.60% soybean meal) were supplemented with 0.00% (G1), 0.10% (G2), 0.20% (G3), 0.30% (G4), and 0.40% NaB (G5), respectively. After the feeding trial, the mortality for G3 challenged with Aeromonas salmonicida for 7 days was lower than that for G1 and G5. The optimal NaB requirement for triploid O. mykiss based on weight gain rate (WGR) and the specific growth rate (SGR) was estimated to be 0.22% and 0.20%, respectively. The activities of intestinal digestive enzymes increased in fish fed a NaB diet compared to G1 (p < 0.05). G1 also showed obvious signs of inflammation, but this inflammation was significantly alleviated with dietary NaB supplementation. In comparison, G3 exhibited a more complete intestinal mucosal morphology. Dietary 0.20% NaB may play an anti-inflammatory role by inhibiting the NF-κB-P65 inflammatory signaling pathway. Additionally, the relative abundance of probiotics was altered by dietary NaB. In conclusion, dietary 0.20% NaB improved the intestinal health of triploid O. mykiss fed a low fish meal diet.

4.
Front Immunol ; 13: 1079677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618404

RESUMO

Cottonseed protein concentrate (CPC) is a potential non-food protein source for fishmeal replacement in fish feed. However, a high inclusion level of CPC in diets may have adverse effects on the metabolism and health of carnivorous fish. This study aimed to investigate CPC as a fishmeal alternative in the diet of rainbow trout Oncorhynchus mykiss based on growth performance, blood metabolites, and intestinal health. Five isonitrogenous (46% crude protein) and isolipidic (16% crude lipid) diets were formulated: a control diet (30% fishmeal) and four experimental diets with substitution of fishmeal by CPC at 25%, 50%, 75%, and 100%. A total of 600 fish (mean body weight 11.24g) were hand-fed the five formulated diets to apparent satiation for eight weeks. The results showed no adverse effects on growth performance when 75% dietary fishmeal was replaced by CPC. However, reduced growth and feed intake were observed in rainbow trout fed a fishmeal-free diet based on CPC (CPC100%). Changes in serum metabolites were also observed in CPC100% compared with the control group, including an increase in alanine aminotransferase (ALT), a decrease in alkaline phosphatase (ALP), alterations in free amino acids, and reductions in cholesterol metabolism. In addition, the CPC-based diet resulted in reduced intestinal trypsin, decreased villus height and width in the distal intestine, upregulated mRNA expression levels of inflammatory cytokines in the intestine, and impaired gut microbiota with reduced bacterial diversity and decreased abundance of Bacillaceae compared with the control group. The findings suggest that the optimum substitution rate of dietary fishmeal by CPC for rainbow trout should be less than 75%.


Assuntos
Óleo de Sementes de Algodão , Oncorhynchus mykiss , Animais , Óleo de Sementes de Algodão/metabolismo , Oncorhynchus mykiss/genética , Intestinos , Mucosa Intestinal/metabolismo , Dieta
5.
Front Physiol ; 12: 784852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925074

RESUMO

This study aimed to demonstrate the effects of dietary glutathione (GSH) on growth, intestinal antioxidant capacity, histology, gene expression, and microbiota in juvenile triploid rainbow trout (Oncorhynchus mykiss). Different diets (G0-control, G100, G200, G400, and G800) containing graded levels of GSH (0, 100, 200, 400, and 800mgkg-1) were fed to triplicate groups of 30 fish (initial mean weight 4.12±0.04g) for 56days. G400 had significantly improved weight gain and feed conversion rate. Based on the broken-line regression analysis, the optimum dietary GSH level was 447.06mgkg-1. Catalase and superoxide dismutase activities were significantly higher in G200-G800. G200 had significantly lower malondialdehyde content. The height of the intestinal muscular layer in G400 was significantly higher than that of the control group. Intestinal PepT1 and SLC1A5 gene expression was significantly increased, and the highest was observed in G400. TNF-α, IL-1ß, IL-2, and IL-8 expression were significantly decreased than that of G0. Next-generation sequencing of the 16S rDNA showed a significant difference in alpha diversity whereas no differences in beta diversity. On the genus level, LefSe analysis of indicator OTUs showed Ilumatobacter, Peptoniphilus, Limnobacter, Mizugakiibacter, Chelatococcus, Stella, Filimonas, and Streptosporangium were associated with the treatment diet, whereas Arcobacter, Ferrovibrio, Buchnera, Chitinophaga, Stenotrophobacter, Solimonadaceae, Polycyclovorans, Rhodococcus, Ramlibacter, and Azohydromonas were associated with the control diet. In summary, feeding juvenile triploid O. mykiss 200-800mgkg-1 GSH improved growth and intestinal health.

6.
Sci Rep ; 11(1): 23950, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907285

RESUMO

Flash glucose monitoring (FGM) was introduced in China in 2016, and it might improve HbA1c measurements and reduce glycaemic variability during T1DM therapy. A total of 146 patients were recruited from October 2018 to September 2019 in Liaocheng. The patients were randomly divided into the FGM group or self-monitoring blood glucose (SMBG) group. Both groups wore the FGM device for multiple 2-week periods, beginning with the 1st, 24th, and 48th weeks for gathering data, while blood samples were also collected for HbA1c measurement. Dietary guidance and insulin dose adjustments were provided to the FGM group patients according to their Ambulatory Glucose Profile (AGP) and to the SMBG group patients according to their SMBG measurements taken 3-4 times daily. All of the participants underwent SMBG measurements on the days when not wearing the FGM device. At the final visit, HbA1c, time in range (TIR), duration of hypoglycaemia and the number of diabetic ketoacidosis (DKA) events were taken as the main endpoints. There were no significant difference in the baseline characteristics of the two groups. At 24 weeks, the HbA1c level of the FGM group was 8.16 ± 1.03%, which was much lower than that of the SMBG group (8.68 ± 1.01%) (p = 0.003). The interquartile range (IQR), mean blood glucose (MBG), and the duration of hypoglycaemia in the FGM group also showed significant declines, compared with the SMBG group (p < 0.05), while the TIR increased in the FGM group [(49.39 ± 17.54)% vs (42.44 ± 15.49)%] (p = 0.012). At 48 weeks, the differences were more pronounced (p < 0.01). There were no observed changes in the number of episodes of DKA by the end of the study [(0.25 ± 0.50) vs (0.28 ± 0.51), p = 0.75]. Intermittent use of FGM by T1DM patients can improve their HbA1c and glycaemic control without increasing the hypoglycaemic exposure in insulin-treated individuals with type 1 diabetes in an developing country.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas/metabolismo , Insulina/administração & dosagem , Adolescente , Adulto , Automonitorização da Glicemia , China , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Feminino , Humanos , Hipoglicemia/sangue , Hipoglicemia/terapia , Masculino , Pessoa de Meia-Idade
7.
Fish Physiol Biochem ; 46(3): 1011-1018, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31950318

RESUMO

In this study, the effects of dietary myo-inositol on the skin mucosal immunity and growth of taimen (Hucho taimen) fry were determined. Triplicate groups of 500 fish (initial weight 5.58 ± 0.15 g) were fed different diets containing graded levels of myo-inositol (28.75, 127.83, 343.83, 565.81, and 738.15 mg kg-1) until satiation for 56 days. Thereafter, the nonspecific skin mucus immune parameters, antioxidative capacity, and growth performance were measured. The skin mucus protein and the activities of alkaline phosphatase were significantly higher than those in the control group (P < 0.05). However, there were no significant differences in lysozyme activity among the treatments (P > 0.05). The antimicrobial activity and minimum inhibitory concentration of the skin mucus were increased significantly by myo-inositol supplementation (P < 0.05). The superoxide dismutase, catalase, and glutathione peroxidase activities were significantly elevated in the treatment groups (P < 0.05), whereas the malondialdehyde contents were significantly decreased (P < 0.05). Low-level myo-inositol (28.75 mg kg-1) led to a significantly lower weight gain, feed efficiency, condition factor, and survival rate compared with the other treatments (P < 0.05). In conclusion, dietary myo-inositol deficiency (28.75 mg kg-1) adversely affects the skin mucus immune parameters, antioxidative capacity, and growth performance of Hucho taimen fry.


Assuntos
Carpas/imunologia , Suplementos Nutricionais , Imunidade nas Mucosas/efeitos dos fármacos , Inositol/farmacologia , Muco/efeitos dos fármacos , Pele/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Aeromonas hydrophila/crescimento & desenvolvimento , Ração Animal , Animais , Carpas/genética , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Catalase/imunologia , Dieta/veterinária , Glutationa Peroxidase/imunologia , Muco/enzimologia , Muco/imunologia , Pele/enzimologia , Pele/imunologia , Superóxido Dismutase/imunologia , Yersinia ruckeri/crescimento & desenvolvimento
8.
Transbound Emerg Dis ; 67(2): 648-660, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31580519

RESUMO

Five novel H5N6 influenza viruses, including four highly pathogenic avian influenza viruses and one low pathogenic avian influenza virus, were isolated from migratory birds in Ningxia, China, in November 2017. To understand the genetic origination of the novel H5N6 virus, and the infectivity and pathogenicity of the four highly pathogenic avian influenza viruses in mammals, phylogeographic analyses and infection studies in mice were performed. The phylogenetic and phylogeographic analyses showed that the H5N6 isolates, which are closely related to the viruses from Korea, Japan and the Netherlands, originated from reassortant virus between H5N8 and HxN6 viruses from western Russia. The animal study revealed that the SBD-87 isolate presented moderate virulence in mice, suggesting a potential public risk to humans and a potential threat to public health.


Assuntos
Vírus da Influenza A/genética , Influenza Aviária/virologia , Vírus Reordenados , Animais , Aves , China/epidemiologia , Feminino , Humanos , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Japão , Camundongos , Camundongos Endogâmicos BALB C , Países Baixos , Filogeografia , República da Coreia , Federação Russa , Virulência
9.
Fish Shellfish Immunol ; 93: 322-327, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31352114

RESUMO

The present study was conducted to evaluate the effect of dietary traditional Chinese medicines on the growth, immunity, and composition of culturable gut microflora in Oncorhynchus masou. Diets were formulated to contain no medicine (control), antitoxic decoction (A), general antiphlogistic decoction (B), or Herbae Artemisiae Capillariae decoction (C). Fish were manually fed twice daily till apparent satiation for 30 days. Compared with that in the control group, supplementation with the three kinds of Chinese herbal medicine enhanced fish growth significantly (P < 0.05). The activities of liver superoxide dismutase and glutathione peroxidase in the treatment groups were significantly higher compared with those in the control group (P < 0.05). The quantity of intestinal microflora was higher in the treatment groups compared with that in the control group. Moreover, there were some effects of dietary Chinese herbal medicine on the composition of intestinal microflora. Microflora of Pseudomonas sp., Psychrobacter sp., Microbacterium sp., Macrococcus sp., Burkholderia sp., and Arthrobacter sp. were found in the treatment groups, whereas there were none in the control group. There was a significant increase in their amounts in the treatment groups (P < 0.05). The three kinds of traditional Chinese medicines can improve the growth and immunity of Oncorhynchus masou and affect the quantity and composition of intestinal microflora.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Oncorhynchus/imunologia , Oncorhynchus/microbiologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Medicamentos de Ervas Chinesas/administração & dosagem , Oncorhynchus/crescimento & desenvolvimento
11.
Front Microbiol ; 8: 1763, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966609

RESUMO

At least 15 cases of human beings infected with H5N6 have been reported since 2014, of which at least nine were fatal. The highly pathogenic avian H5N6 influenza virus may pose a serious threat to both public health and the poultry industry. However, the molecular features promoting the adaptation of avian H5N6 influenza viruses to mammalian hosts is not well understood. Here, we sequentially passaged an avian H5N6 influenza A virus (A/Northern Shoveler/Ningxia/488-53/2015) 10 times in mice to identify the adaptive amino acid substitutions that confer enhanced virulence to H5N6 in mammals. The 1st and 10th passages of the mouse-adapted H5N6 viruses were named P1 and P10, respectively. P1 and P10 displayed higher pathogenicity in mice than their parent strain. P10 showed significantly higher replication capability in vivo and could be detected in the brains of mice, whereas P1 displayed higher replication efficiency in their lungs but was not detectable in the brain. Similar to its parent strain, P10 remained no transmissible between guinea pigs. Using genome sequencing and alignment, multiple amino acid substitutions, including PB2 E627K, PB2 T23I, PA T97I, and HA R239H, were found in the adaptation of H5N6 to mice. In summary, we identified amino acid changes that are associated with H5N6 adaptation to mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...